Получена: 10 ноября 2023/ Принята: 15 ноября 2023/ Опубликована online: 28 декабря 2023
УДК 612.821.3
DOI: 10.26212/2227-1937.2023.22.34.007
А.А. Ким, http://orcid: 0009-0004-1616-5755
Ш.О. Рыспекова, http://orcid: 0009-0006-6106-2565
А.Д. Нурахова, http://orcid: 0000-0003-0048-1396
НАО «Казахский Национальный медицинский университет имени С. Д. Асфендиярова», г. Алматы, Республика
Казахстан
СОВРЕМЕННЫЕ НАУЧНЫЕ ПРЕДСТАВЛЕНИЯ О НЕЙРОБИОЛОГИИ СТРЕССА И ЕГО ВЛИЯНИИ
НА ФУНКЦИОНАЛЬНУЮ АСИММЕТРИЮ МОЗГА
Резюме: В данной статье проводится анализ литературных данных по основным аспектам воздействия стресса на
различные формы функциональной асимметрии мозга в контексте пола, возраста, а также механизмов изменения
когнитивных и эмоциональных функций мозга. Рецепторные и нейрохимические изменения, вызванные стрессом,
обладают свойством влиять на баланс активности полушарий мозга, в частности, на асимметрию в работе левого и
правого полушарий.
Ключевые слова: межполушарные асимметрия мозга, стресс, гормон, активация, левое полушарие, правое полушарие
СПИСОК ЛИТЕРАТУРЫ
1 Springer S, Deutsch G. Left Brain Right Brain:
Perspectives from Cognitive Neuroscience. New York:
W.H. Freeman & Company; 1997.
2 Broca P. Sur le siege de la faculte du langage articule
(“nous parlons avec l’hemisphere gauche”, p384). Bull.
Soc. Anthropol. 1865;6:377–93.
3 Dax M. Lesions de la moitie gauche de l’encephale
coincident avec l’oubli des signes de la pensee (lu a
montpellier en 1936). Gaz. Hebd. Medecine Chir. Tome 2.
1865;2:259–62.
4 Manning L, Thomas-Anterion C. Marc Dax and the
discovery of the lateralisation of language in the left
cerebral hemisphere. Rev. Neurol. 2011;167(12):868–72.
5 Gazzaniga MS, Ivry RB, Mangun GR. Cerebral
Lateralization and Specialization. Cognitive neuroscience:
the biology of the mind. 2nd ed. New York: Norton; 2002.
ISBN 978-0393977776. OCLC 47767271.
6 Geschwind N, Levitsky W. Human brain: left-right
asymmetries in temporal speech region. Science.
1968;161(3837):186–87.
7 LeMay M. Morphological cerebral asymmetries of
modern man, fossil man, and nonhuman primate. Ann. N.
Y. Acad. Sci. 1976;280(1):349–66.
8 Toga AW, Thompson PM. Mapping brain asymmetry.
Nat. Rev. Neurosci. 2003;4(1):37–48.
9 Gazzaniga MS, Ivry RB, Mangun GR. Cerebral
Lateralization and Specialization. Cognitive neuroscience:
the biology of the mind. 2nd ed. New York: Norton; 2002.
ISBN 978-0393977776. OCLC 47767271.
10 Witelson SF. Brain Asymmetry, Functional Aspects. In:
States of Brain and Mind. Readings from the Encyclopedia
of Neuroscience. Birkhäuser, Boston, MA; 1988.
https://doi.org/10.1007/978-1-4899-6771-8_6.
11 “Broca’s Area Is the Brain’s Scriptwriter, Shaping
Speech, Study Finds – 02/17/2015”.
www.hopkinsmedicine.org. Retrieved 2019-04-11
12 Kanwisher N, Yovel G. The fusiform face area: a
cortical region specialized for the perception of faces.
Philosophical Transactions of the Royal Society B:
Biological Sciences. 2006-12-29;361(1476):2109–2128.
doi:10.1098/rstb.2006.1934.
13 Meng M, Cherian T, Singal G, Sinha P. Lateralization of
face processing in the human brain. Proceedings of the
Royal Society B: Biological Sciences. 2012-05-
22;279(1735):2052–2061. doi:10.1098/rspb.2011.1784.
14 Kratkaya meditsinskaya entsiklopediya. V 2-kh
tomakh / Pod red. V. I. Pokrovskogo, izd. 3-e, ispr. i dop.
// M.: NPO “Meditsinskaya entsiklopediya”, 1994. — T. II,
Miyazy — Yashchur, 544 s. ISBN 5-8317-0086-0. S. 343—
344 (Stress, emotsional’nyy stress).
15 Tarabrina NV, Agarkov VA, Bykhovets YuV, Kalmykova
ES, Makarchuk AV, Padun MA, Udachina EG, Khimchyan
ZG, Shatalova NE, Shchepina AI. Prakticheskoye
rukovodstvo po psikhologii posttravmaticheskogo stressa
Ch. 1. Teoriya i metody / pod obshchey redaktsiyey
Tarabrinoy NV. — M.: Izdatel’stvo “Kogito-Tsentr”, 2007.
— S. 12—13. — 208 s. — (Psikhologicheskiy
instrumentariy). — 2000 ekz. — ISBN 978-5-89353-208-
1.
16 Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G.
Biological and psychological markers of stress in humans:
Focus on the Trier Social Stress Test. Neurosci Biobehav
Rev. 2014 Jan;38:94-124.
17 Roozendaal B, McEwen B, Chattarji S. Stress, memory
and the amygdala. Nat Rev Neurosci. 2009;10:423–433.
https://doi.org/10.1038/nrn2651
18 Aybek S, Nicholson TR, O’Daly O, Zelaya F, Kanaan RA,
David AS. Emotion-motion interactions in conversion
disorder: an FMRI study. PLoS One. 2015;10.
19 Katmah R, Al-Shargie F, Tariq U, Babiloni F, AlMughairbi F, Al-Nashash H. A Review on Mental Stress
Assessment Methods Using EEG Signals. Sensors (Basel).
2021 Jul 26;21(15):5043. doi: 10.3390/s21155043.
PMID: 34372280; PMCID: PMC8347831.
20 Stanković M, Nešić M. Functional brain asymmetry for
emotions: psychological stress-induced reversed
hemispheric asymmetry in emotional face perception. Exp
Brain Res. 2020;238:2641–2651.
https://doi.org/10.1007/s00221-020-05920-w
21 Brigitte S, Harry AW. Handbook of the Neuroscience of
Language. Elsevier; 2008. Pages 453-463. ISBN
9780080453521. https://doi.org/10.1016/B978-
008045352-1.00048-3.
22 Nelson TA, Sérgio SS, Antonio A. Models of brain
asymmetry in emotional processing. Psychol Neurosci.
2008;1(1):63-66. doi:10.3922/j.psns.2008.1.010
23 Demaree HA, Everhart DE, Youngstrom EA, Harrison
DW. Brain lateralization of emotional processing:
Historical roots and a future incorporating “dominance”.
Behav Cogn Neurosci Rev. 2005;4:3-20.
24 Davidson RJ. Cerebral asymmetry, emotion, and
affective style. In: R.J. Davidson, K. Hughdahl, editors.
Brain Asymmetry. Massachusetts: MIT Press; 1995. Pages
361-387.
25 Stanković M, Nešić M. Functional brain asymmetry for
emotions: Psychological stress-induced reversed
hemispheric asymmetry in emotional face perception. Exp
Brain Res. 2020;238:2641–2651. doi:
https://doi.org/10.1007/s00221-020-05920-w.
26 Beraha E, Eggers J, Hindi Attar C, Gutwinski S,
Schlagenhauf F, Stoy M, et al. Hemispheric Asymmetry for
Affective Stimulus Processing in Healthy Subjects–A fMRI
Study. PLoS One. 2012;7. e46931.
https://doi.org/10.1371/journal.pone.0046931.
27 Phan KL, Taylor SF, Welsh RC, et al. Neural correlates
of individual ratings of emotional salience: a trial-related
fMRI study. Neuroimage. 2004 Feb;21(2):768-780. DOI:
10.1016/j.neuroimage.2003.09.072. PMID: 14980580.
28 Onal-Hartmann C, Pauli P, Ocklenburg S, Güntürkün O.
The motor side of emotions: investigating the relationship
between hemispheres, motor reactions and emotional
stimuli. Psychol Res. 2011.
https://doi.org/10.1007/s00426-011-0337-4.
29 van Honk J, Schutter DJ, Hermans EJ, Putman P. Low
cortisol levels and the balance between punishment
sensitivity and reward dependency. Neuroreport.
2003;14:1993–1996.
30 Starcke K, Brand M. Decision making under stress: A
selective review. Neurosci Biobehav Rev.
2012;36(4):1228-1248.
https://doi.org/10.1016/j.neubiorev.2012.02.003.
31 Bethmann A, Tempelmann C, De Bleser R, Scheich H,
Brechmann A. Determining language laterality by fMRI
and dichotic listening. Brain Res. 2007;1133:145–157.
59
doi:10.1016/j.brainres.2006.11.057
32 Johnstone LT, Karlsson EM, Carey DP. Left-handers are
less lateralized than right-handers for both left and right
hemispheric functions. Cereb Cortex. 2021;31:3780–
3787.
33 Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel
A, et al. Handedness and hemispheric language
dominance in healthy humans. Brain. 2000;123:2512–
2518.
34 Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A.
Two distinct forms of functional lateralization in the
human brain. Proc Natl Acad Sci USA. 2013;110:E3435–
E3444.
35 Beeman M, Friedman RB, Grafman J, Perez E, Diamond
S, Lindsay MB. Summation priming and coarse semantic
coding in the right-hemisphere. J Cogn Neurosci.
1994;6:26–45.
36 Chiarello C, Liu S, Shears C, Quan N, Kacinik N. Priming
of strong semantic relations in the left and right visual
fields: a time-course investigation. Neuropsychologia.
2003;41:721–732.
37 Hutchison KA. Is semantic priming due to association
strength or feature overlap? A microanalytic review.
Psychon Bull Rev. 2003;10:785–813.
38 Jung-Beeman M. Bilateral brain processes for
comprehending natural language. Trends Cogn Sci.
2005;9:512–518.
39 Roozendaal B, McEwen BS, Chattarji S. Stress, memory
and the amygdala. Nat Rev Neurosci. 2009;10:423-433.
40 Jung YH, Shin NY, Jang JH, Lee WJ, Lee D, Choi Y, Choi
SH, Kang DH. Relationships among stress, emotional
intelligence, cognitive intelligence, and cytokines.
Medicine (Baltimore). 2019;98(18):e15345.
doi:10.1097/MD.0000000000015345.
41 Görgens-Ekermans G, Brand T. Emotional intelligence
as a moderator in the stress-burnout relationship: a
questionnaire study on nurses. J Clin Nurs. 2012;21(15-
16):2275–2285. doi:10.1111/j.1365-2702.2012.04171.x.
42 Mitra S, Sarkar AP, Haldar D, Saren AB, Lo S, Sarkar GN.
Correlation among perceived stress, emotional
intelligence, and burnout of resident doctors in a medical
college of West Bengal: A mediation analysis. Indian J
Public Health. 2018;62(1):27–31.
doi:10.4103/ijph.IJPH_368_16.
43 Mihov KM, Denzler M, Förster J. Hemispheric
specialization and creative thinking: a meta-analytic
review of lateralization of creativity. Brain Cogn.
2010;72(3):442-448. doi:10.1016/j.bandc.2009.12.007.
44 Mashoodh R, Habrylo IB, Gudsnuk K, Champagne FA.
Sex-specific effects of chronic paternal stress on offspring
development are partially mediated via mothers. Horm
Behav. 2023;152:105357.
doi:10.1016/j.yhbeh.2023.105357.
45 Bisagno V, Cadet JL. Stress, sex, and addiction:
potential roles of corticotropin-releasing factor, oxytocin,
and arginine-vasopressin. Behav Pharmacol. 2014;25(5-
6):445-457. doi:10.1097/FBP.0000000000000049.
46 Woon FL, Hedges DW. Amygdala volume in adults with
posttraumatic stress disorder: a meta-analysis. J
Neuropsychiatry Clin Neurosci. 2009;21:5–12.
47 Reschke-Hernández AE, Okerstrom KL, Bowles
Edwards A, Tranel D. Sex and stress: Men and women
show different cortisol responses to psychological stress
induced by the Trier social stress test and the Iowa
singing social stress test. J Neurosci Res. 2017 Jan 2;95(1-
2):106-114. doi: 10.1002/jnr.23851.
48 Cunningham WA, Kirkland T. The joyful, yet balanced,
amygdala: moderated responses to positive but not
negative stimuli in trait happiness. Soc Cogn Affect
Neurosci. 2014;9:760–766.
49 Hamann SB, Ely TD, Hofman JM, Kilts CD. Ecstasy and
agony: activation of the human amygdala in positive and
negative emotion. Psychol Sci. 2002;13:135–141.
50 Wang S, Yu R, Tyszka JM, Zhen S, Kovach C, Sun S, et al.
The human amygdala parametrically encodes the
intensity of specific facial emotions and their categorical
ambiguity. Nat Commun. 2017;8:14821.
51 Kajantie E, Phillips DI. The effects of sex and hormonal
status on the physiological response to acute psychosocial
stress. Psychoneuroendocrinology. 2006;31:151–178.
52 Mueller BR, Bale TL. Sex-specific programming of
offspring emotionality after stress early in pregnancy. J
Neurosci. 2008;28:9055–9065.
53 Herman JP, Ostrander MM, Mueller NK, Figueiredo H.
Limbic system mechanisms of stress regulation:
Hypothalamo-pituitary-adrenocortical axis. Prog
Neuropsychopharmacol Biol Psychiatry. 2005;29:1201–
1213. doi:10.1016/j.pnpbp.2005.08.006.
54 Bale TL, Epperson CN. Sex differences and stress
across the lifespan. Nat Neurosci. 2015;18:1413–1420.
doi:10.1038/nn.4112.
55 Radhakrishnan L, Carey K, Hartnett KP, et al. Pediatric
Emergency Department Visits Before and During the
COVID-19 Pandemic — United States, January 2019–
January 2022. MMWR Morb Mortal Wkly Rep.
2022;71:313–318. doi:
http://dx.doi.org/10.15585/mmwr.mm7108e1.
56 Stawski RS, Sliwinski MJ, Smyth JM. Stress-related
cognitive interference predicts cognitive function in old
age. Psychol Aging. 2006;21:535–544.
57 Lipson SK, Zhou S, Abelson S, Heinze J, Jirsa M,
Morigney J, et al. Trends in college student mental health
and help-seeking by race/ethnicity: Findings from the
national healthy minds study, 2013–2021. J Affect Disord.
2022;306:138–147. doi:10.1016/j.jad.2022.03.038.
58 Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG,
Russell J. Neurobiology of depression: an integrated view
of key findings. Int J Clin Pract. 2007 Dec;61(12):2030-40.
doi: 10.1111/j.1742-1241.2007.01602.x. Epub 2007 Oct
17. PMID: 17944926; PMCID: PMC2228409.